随机扰动项,习惯称之为随机误差项,是指包含的是模型主要变量以外的信息。随机扰动项在计量经济学模型中占据特别重要的地位,也是计量经济学模型区别于其它经济数学模型的主要特征。李子奈(2008)将计量经济学应用研究的总体模型设定归纳为:将影响被解释变量的因素集进行有效分解,按照与被解释变量关联关系的恒常性和显著性两个维度,分解为显著的恒常性因素集、显著的偶然性因素集和无数单独影响可以忽略的非显著因素集;所有显著的恒常性因素作为解释变量;显著的偶然性因素对被解释变量的影响,则通过对数据进行奇异点诊断后采用技术手段予以消除;而无数非显著因素对被解释变量的影响则用一个随机扰动项(stochastic disturbance term)表示,并引入模型。W.H.Greene (2000)指出,没有什么模型可以期望处理经济现实的无数偶然因素,因此在经验模型中纳入随机因素是必须的,被解释变量的观察值不仅要归于已经清楚了解的变量,也要考虑来自人们并不清楚了解的偶然性和无数微弱因素的影响。