月牙定理
(数学术语)
月牙定理指以直角三角形两条直角边为直径向外做两个半圆,以斜边为直径向内做半圆,则三个半圆所围成的两个月牙形面积之和等于该直角三角形的面积。这是古希腊数学家希波克拉底发现的一条平面几何里应用广泛的优美定理。希波克拉底的证明方法既简单又高明。首先,他必须证实所论证的新月形与图中阴影部分的△AOC面积完全相等。这样,他就可以应用已知的三角形能表示为等价平方的公理来断定新月形也可用等价平方表示。
知识树
时光轴
论点集
总题库
阅读模式
知识树 创建页面
知识树 创建说明
领域
提 交
数学
词条相关
词条 主页
》
词条 科普
》
词条 事件
》
词条 题库
》
词条 知识
》
加载更多
加载更多
加载更多
加载更多