单位分解法(partition of unity method),理学-力学-计算力学-﹝计算力学基本概念﹞-﹝基本方程离散化计算方法﹞-无网格法-近似方法,一种通过局部近似函数空间和单位分解函数构建全局近似函数空间,并求解偏微分方程的数值方法。设为问题求解域的一个开覆盖,为一组紧支函数,其紧支域分别包含在对应的内,并对于内的任一点均满足下列单位分解条件:则称为对应于的单位分解函数。单位分解法通常要求具有利普希茨连续性。若给定上的近似函数空间,可构建下列全局近似函数空间:称为单位分解近似函数空间。将单位分解近似与各种加权余量格式(见连续结构的离散化方法)结合,可建立偏微分方程的数值求解方法,称为单位分解法。单位分解近似的构建非常灵活,许多广泛应用的函数均可作为单位分解函数,如无网格法中常用的移动最小二乘近似和重构核近似的形函数、谢泼德函数等。有限元形函数就是常用的单位分解函数,可以方便地在有限元法中引入单位分解近似,如构造等参元形函数(母单元),实现-自适应有限单元法和-自适应有限单元法。